Morningstar Risk Model
Methodology

Introduction
Risk is inherent to investing. Developing a prospective view of risk allows investors to make investment decisions tailored to their individual risk preferences and ultimately increase the utility derived from their investment portfolios. A risk model forecasts the distribution of future asset returns. This distribution contains all the information needed to assess the riskiness of a portfolio. As the forecast distribution widens, it indicates more uncertainty about the future return potential of the portfolio. As tail probabilities increase, it indicates the portfolio has higher risk of experiencing an extreme loss. With this forecast, investors are empowered to evaluate the riskiness of assets or portfolios of assets.

The model seeks to identify a small number of independent, latent sources of return. Movements in these sources drive movement in a comparably small number of interpretable factors. An example of a factor is the exposure to a particular currency: For instance, how much does an increase in the euro/U.S. dollar exchange rate drive an increase in the value of a stock or bond? Movements in the factors drive asset returns.

Several methodological choices must be made when building a risk model. Our choices were made with the goal of creating a differentiated, interpretable, responsive, and predictive model. We began with the following assumptions about asset returns, which shaped our methodological choices.

- A small number of independent sources of market movement drive the majority of variation in asset returns.
- Asset returns are not normally distributed.
- The distribution of asset returns changes through time.

These three concepts are well-recognized and not controversial, although some or all of them are often ignored for convenience by risk-modeling practitioners.
Model Highlights
Several features make the Morningstar Risk Models unique:

1) We are holdings-based.
Our risk models are entirely holdings-based. When looking at portfolios, holdings-based models will provide more accurate outputs for risk prediction, factor attribution, risk decomposition, and sensitivity analysis. Holdings-based models do not assume that the past equals the future as they allow for the fact that securities may change, managed products may change, and portfolios may change over time. They also enable new securities or funds to be covered immediately.

2) We can forecast the full probability distribution of future returns with non-normal distributions.
Our risk models are agnostic to any particular risk metric a user wishes to employ. With the advanced features of our model, volatility, conditional value at risk, downside deviation, interquartile range, skewness, kurtosis, and many other measures can be calculated directly from the probability distribution that is output from our models.

3) We use proprietary fundamentals-based factors that we believe are superior drivers of returns.
Morningstar’s research group provides forward-looking ratings on assets, which have been successful in predicting the future distribution of returns. Factors based on these ratings also tend to be uncorrelated with traditional risk factors, making them a complementary addition to our risk factor model. Likewise, we have distilled Morningstar’s proprietary database of mutual fund holdings into factors, which are also uncorrelated predictors of the future distribution of returns.

4) We make no assumption that comovement of returns is exclusively linear.
The common practice of building and analyzing only a covariance matrix misses the fact that stocks can experience tail events at the same time. Our model directly captures higher comovements of returns, enabling the construction of portfolios that can control tail risk.

5) We can customize each methodological decision at scale.
Historically, risk model users are reliant on the decisions of the risk model providers. With Morningstar’s Risk Model technology platform, we can construct and build entire histories of new models within a matter of hours. We have deployed a suite of risk models specific to asset class, region, and currency and can build customized models for clients. Descriptions for each risk model are found in Appendix A.

6) We offer integrated and robust risk analysis workflows.
While risk models themselves offer exposures, premiums, and forecasts, these outputs are usually most valuable when placed within other workflows or modules. Morningstar offers users the ability to decompose risk or attribute returns to factors and holdings through time and across many instruments. Morningstar also offers a full complement of scenario analysis capabilities including historical scenarios, predefined macro-financial scenarios, or market-driven scenarios.
Universe Construction
We define an estimation universe of investable companies with reliable data on which to build the model. Securities outside the estimation universe—generally illiquid assets with small market capitalizations—are relegated to the extended universe. We use only securities in the estimation universe to derive model parameters. This ensures the model parameters are not influenced by illiquid assets with unreliable data.

Exhibit 1 Estimation and Coverage Universe for the Morningstar Global Equity Risk Model

<table>
<thead>
<tr>
<th>Estimation Universe</th>
<th>Coverage Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximately 11,000 stocks (Curated broad group of large, liquid stocks)</td>
<td>Approximately 44,000 stocks (Small, illiquid stocks)</td>
</tr>
</tbody>
</table>

Source: Morningstar.

We aim for a broad selection of companies across countries that are liquid and large enough to be investable for local and international investors. Our liquidity and market capitalization thresholds are time-varying depending on the market condition, which ensures the estimation universe selects investable securities at any time point. Appendix B details the exact rules we use to filter our estimation universe for each model.

All market returns and factor inputs are converted into a denomination of the model currency when appropriate. For example, the outputs of the Morningstar United Kingdom Equity Risk Model measure risk with a British pound numeraire.

Factor Selection
There are many ways to estimate the comovement of asset returns. A naïve approach might be to calculate a sample covariance matrix using historical returns. Unfortunately, this solution suffers from the curse of dimensionality; the number of parameters in the covariance matrix is huge relative to the number of historical return observations. As a result, the covariance matrix will be dominated by noise and will poorly forecast future comovement.

To remedy this problem, we use a well-understood approach to reduce the number of dimensions: factor modeling. By finding common factors that drive asset returns, we no longer need to model each asset individually. We can instead model a much smaller number of factors. This reduces the dimension of our problem to reasonable levels and allows us to generate estimates of future comovement.

There are several key notions needed to understand the way this model works:

▶ An asset return is the return of an investable security over a period.
▶ A factor is an observable data point that appears to influence asset returns, like liquidity or sector.
▶ A factor exposure is a number that measures how much an asset’s return is influenced by a factor. Exposures can be positive, negative, or zero. Exposures change through time.
A factor premium is a number that represents how much a particular factor has influenced asset returns for a particular period.

We will later introduce sources. These are unobservable phenomena discovered through statistical inference that drive some collection of factor premiums.

We set out with several criteria when selecting factors for our model:

- Our factors should have an economic basis and empirical relevance as predictors of the future distribution of asset returns.
- Our factors should be interpretable and lend insight to a risk attribution analysis.
- Our factor set should be parsimonious.
- Our factor exposures should be practical to calculate.

Each model has a specific list of factors tailored to the model’s asset class, region, and currency. For equity securities, the factors fall naturally into five distinct groups: style, sector, region, currency, and an equity market factor. The equity market factor results from our estimation methodology and captures the common equity market movement globally or for a specific region. For fixed-income securities, we currently group factors into duration and credit. A detailed treatment for each factor can be found in Appendix C.

Factor Premium Estimation

Given a collection of factor exposures X_t for a set of n stocks at time t, we perform a cross-sectional regression of those exposures on total returns from t to $t+1$, r_t, to estimate the factor premium f_t.

$$r_t = X_t f_t + e_t$$

Where

- $r_t = (n \times 1)$ vector of returns between time t and $t+1$
- $X_t = (n \times m)$ matrix of securities' exposures to factors at time t
- $f_t = (m \times 1)$ vector of factor premiums between time t and $t+1$
- $e_t = (n \times 1)$ vector of error terms between time t and $t+1$

To improve the statistical properties of the estimated factor premiums, the exposure table contains an intercept term and a column of 1, and certain conditions are imposed on premium estimates using a constrained regression. A detailed description of the methodology can be found in Appendix E.

By repeating this cross-sectional regression, we construct a historical time series of the factor premiums. We use this time series to analyze how each factor behaves in the context of the other factors by examining factor comovement in the history.
Exhibit 2 Historical Time Series of the Factor Premiums for the Morningstar Global Equity Risk Model in USD

Exhibit 2 shows the cumulative return of the Morningstar Global Equity Risk Model style factor premiums in USD for the past five years.

Forecast Factor Comovement and Residual Volatility

Morningstar Risk Model supports a variety of methods to forecast the comovement of the factor premiums. The simplest method is to estimate the sample covariance matrix of the factor premiums. This rests on the assumption that the covariances between factors are stable over time. To accommodate time-varying covariance structure, another conventional method is to overweight more recent observations by exponentially weighting the observations, where a parameter “half-life” controls how quickly the impact of earlier observations is reduced. We can further enhance the flexibility of the method by using different half-life parameters in estimating the correlation matrix and the variance of premiums and combining the two to create a covariance matrix. Longer horizons typically improve the estimation of the correlation structure, and shorter horizons tend to be better for variance forecast. Note that different optimized parameter settings can be applied to support specific applications.

In addition to factor premiums, the cross-sectional regression produces residual terms for each stock in a particular period, which represents the return not explained by the fundamental factors. We model the volatility of this idiosyncratic portion of return using an exponentially weighted sample variance. The half-life parameter is typically set at short horizons, such as one month, to reflect the observation that the idiosyncratic risk of stocks is more responsive to short-term events.
In addition to this conventional covariance-matrix-based volatility estimation, we also support a method for directly estimating higher moments, which is described in another document.

Exponentially Weighted Moving Average Volatility Forecasts

In the exponentially weighted moving, or EWM, estimate volatility forecast model, the covariance matrix and residual variances are estimated at the forecast time and remain constant over the forecast horizon. A portfolio’s variance at time t, Σ_t, is modeled as $\Sigma_t = (\chi_t^P)^T \cdot F_t \cdot \chi_t^P \cdot \chi_t^P + (w_t^P)^T \cdot \Delta_t \cdot w_t^P$, where the χ_t^P are the portfolio’s net exposures to the risk factors, w_t^P are the portfolio’s holdings weights, F_t is a premiums EWM-covariance matrix estimate, and Δ_t is the diagonal matrix with residual EWM-variance estimates along its diagonal. With a portfolio’s net exposures and holdings weights assumed constant, the portfolio’s EWM-estimate volatility forecast over a forecast horizon $[t + 1, t + H]$ (that is, a horizon of size H) is then $\sqrt{H \times \Sigma_t^F}$. The premiums EWM-covariance matrix estimate, F_t, is formed by scaling a premiums EWM-correlation matrix estimate, C_t, by premiums EWM-standard-deviation estimates, so that $F_t = \Sigma_t \cdot C_t \cdot \Sigma_t$, where Σ_t is a diagonal matrix with premiums standard deviations along its diagonal. C_t and Σ_t are estimated separately, each as an EWM-estimate with a separate half-life and from a five-year window of historical data. The idea is that the correlation estimate has more parameters and might need a longer half-life to converge, whereas the standard-deviation estimates might benefit from a shorter half-life to allow for evolution and to reflect the short-term volatility spikes we often observe in the market. The residual EWM-variance estimate, Δ_t, is estimated over a 300-day historical window, again using a separate half-life.

The half-lives were selected to maximize the likelihood of observed premiums and residuals over a given forecast horizon via back-testing. Further details of the method are given in Appendix F, along with the optimal half-lives, for different forecast horizons.

Local-Currency Versions of Risk Models

Risk models must be interpretable by investors in their own local currencies. Morningstar approaches this problem straightforwardly by recalculating factor exposures and by re-estimating factor premiums using local currency returns in separate model runs. For example, momentum exposures may use EUR-based returns when an EUR model version is chosen and may use USD-based returns when a USD model version is chosen. These exposures are built from the ground up using the local currency returns. In the same vein, EUR-based returns are used in the factor premiums estimation when an EUR model version is chosen, and USD-based returns are used in the factor premiums estimation when a USD model version is chosen.

While this implies that the factor exposures and factor premiums may differ between local currency versions of the same model, it does represent the most direct approach to building a risk model artifact that a local investor would desire.
Conclusion

The ability to model the risk of a portfolio is paramount to making investment decisions that maximize utility. Our fundamental factor-based methodology provides a way to forecast risk, but more important, it provides an intuitive interpretation of the mechanics behind the forecast. Monitoring factor exposures and making economically sound decisions about which exposures are prudent and which are worth avoiding is much easier when factor exposures are interpretable.

Some of our risk models include factors unique to Morningstar. These factors that spring from our analyst-driven research and our institutional portfolio holdings database are uncorrelated with more-traditional factors and are helpful tools for investors to use when tailoring their portfolio to suit their risk preferences. In addition, we also include some more-standard, academically backed factors in our risk models.

No risk model is perfect. Our aim has been to emphasize interpretability, responsiveness, and predictive accuracy, and in doing so, we believe we have developed a unique framework for building risk models. We recognize there are many decisions to make when constructing a risk model: from universe selection to individual factor calculations to forecasting methods. Our framework allows us to quickly spin up new models to better match the model with our users’ definition of risk.
References

Hull, J.C., 2009. "Options, Futures, and Other Derivatives" (New Jersey: Prentice Hall)

Appendix A: Morningstar Risk Model Definitions

Morningstar Global Equity Risk Model
The Morningstar Global Equity Risk Model captures risk premiums across the global equity universe.

Factors
The model is defined by 37 factors across style, sector, region, and currency.
- Equity Market Factor
- Region: Developed Americas, Developed Europe, Developed Asia Pacific, Emerging Americas, Emerging Europe, Emerging Asia Pacific, Emerging Middle East
- Currency: Australian dollar, British pound, Canadian dollar, euro, Japanese yen, New Zealand dollar, Swiss franc

Data Availability
The model generates daily data from Jan. 1, 2003, to the present day.

Currency
The model is available in five currencies: Australian dollar, British pound, Canadian dollar, euro, Hong Kong dollar, Japanese yen, Singapore dollar, South African rand, Swiss franc, and U.S. dollar.

Morningstar Standard Factor Model
The Morningstar Standard Factor Model captures risk premiums across the global equity universe using industry standard style factors.

Factors
The model is defined by 33 factors across style, sector, region, and currency.
- Style: Yield, Size, Volatility (standard model), Quality, Liquidity, Value-Growth (standard model), Momentum
- Region: Equity Market Factor, Developed Americas, Developed Europe, Developed Asia Pacific, Emerging Americas, Emerging Europe, Emerging Asia Pacific, Emerging Middle East
- Currency: Australian dollar, British pound, Canadian dollar, euro, Japanese yen, New Zealand dollar, Swiss franc

Data Availability
The model generates daily data from Jan. 1, 2003, to the present day.
Currency
The model is available in U.S. dollar.

Morningstar Global Multi-Asset Risk Model
The Morningstar Global Multi-Asset Risk Model captures risk premiums across global equity and fixed income.

Factors
The model is defined by 44 factors across style, sector, region, currency, and rates.
- **Style:** Yield, Size, Volatility (standard model), Quality, Liquidity, Value-Growth (standard model), Momentum
- **Sector:** Basic Materials, Energy, Financial Services, Consumer Defensive, Consumer Cyclical, Technology, Industrials, Healthcare, Communication Services, Real Estate, Utilities
- **Region:** Equity Market Factor, Developed Americas, Developed Europe, Developed Asia Pacific, Emerging Americas, Emerging Europe, Emerging Asia Pacific, Emerging Middle East
- **Currency:** Australian dollar, British pound, Canadian dollar, euro, Japanese yen, New Zealand dollar, Swiss franc
- **Yield Curve:** Duration (USD, EUR, GBP, CHF, and CAD), Convexity (USD, EUR, GBP, CHF, and CAD)
- **Carry**

Data Availability
The model generates daily data from April 1, 2017, to the present day.

Currency
This model is available in the U.S. dollar currency.

Morningstar United Kingdom Equity Risk Model
The Morningstar United Kingdom Equity Risk Model captures equity factor risk premiums in the United Kingdom.

The model is defined by 30 factors across style, sector, and currency.
- **Equity market factor**
- **Style:** Economic Moat, Financial Health, Liquidity, Momentum, Ownership Popularity, Ownership Risk, Size, Valuation, Valuation Uncertainty, Value-Growth, Volatility
- **Sector:** Basic Materials, Telecommunications, Consumer Cyclical, Consumer Defensive, Healthcare, Industrials, Real Estate, Technology, Energy, Financial Services, Utilities
- **Currency:** Australian dollar, Canadian dollar, uro, Japanese yen, New Zealand dollar, Swiss franc, U.S. dollar
Data Availability
The model generates daily data from Jan. 1, 2006, to the present day.

Currency
This model is available in British pound and U.S. dollar.

Morningstar Eurozone Equity Risk Model
The Morningstar Eurozone Equity Risk Model captures equity factor risk premiums across the eurozone region.

The model is defined by 23 factors across style, sector, and currency.
- Equity market factor
- Style: Economic Moat, Financial Health, Momentum, Size, Value-Growth, Volatility
- Currency: Australian dollar, British pound, Japanese yen, Swiss franc, U.S. dollar

Data Availability
The model generates daily data from Jan. 1, 2006, to the present day.

Currency
This model is available in euro and U.S. dollar.

Morningstar North America Equity Risk Model
The Morningstar North America Equity Risk Model captures risk premiums across the North America region.

Factors
The model is defined by 26 factors across style, sector, currency, and equity market.
- Equity Market Factor
- Style: Economic Moat, Financial Health, Liquidity, Momentum, Ownership Popularity, Size, Valuation, Valuation Uncertainty, Value-Growth, Volatility
- Currency: Australian dollar, euro, Canadian dollar, and Japanese yen

Data Availability
The model generates daily data from Jan. 1, 2006, to the present day.

Currency
The model is available in U.S. dollar and Canadian dollar.
Morningstar Developed Europe Equity Risk Model
The Morningstar Developed Europe Equity Risk Model captures risk premiums across the Developed Europe region.

Factors
The model is defined by 26 factors across style, sector, currency, and equity market.

- Equity Market Factor
- Currency: British pound, U.S. dollar, Japanese yen, Australian dollar, Swiss franc

Data Availability
The model generates daily data from Jan. 1, 2008, to the present day.

Currency
The model is available in euro and U.S. dollar.

Morningstar Japan Equity Risk Model
The Morningstar Japan Equity Risk Model captures equity factor risk premiums in Japan.

The model is defined by 24 factors across style, sector, currency, and equity market.

- Equity market factor
- Style: Economic Moat, Financial Health, Liquidity, Momentum, Size, Value-Growth, Volatility (standard model)
- Currency: Australian dollar, British pound, euro, Swiss franc, U.S. dollar

Data Availability
The model generates daily data from Jan. 1, 2010, to the present day.

Currency
This model is available in Japanese yen.

Morningstar Global Equity Risk Model—ESG
The Morningstar Global Equity Risk Model—ESG captures the risk premiums across the global equity universe for 38 factors. The model includes an ESG (environmental, social, and governance) Rating factor that measures how well a company manages ESG-related issues according to Sustainalytics ESG rating criteria. A higher exposure indicates better management of ESG issues.
Factors
The model is defined by 38 factors across style, sector, region, and currency.

- **Equity Market Factor**
- **Style:** Economic Moat, Financial Health, Liquidity, Momentum, Ownership Risk, Ownership Popularity, Size, Valuation, Valuation Uncertainty, Value-Growth, Volatility, ESG Rating
- **Sector:** Basic Materials, Energy, Financial Services, Consumer Defensive, Consumer Cyclical, Technology, Industrials, Healthcare, Communication Services, Real Estate, Utilities
- **Region:** Developed Americas, Developed Europe, Developed Asia Pacific, Emerging Americas, Emerging Europe, Emerging Asia Pacific, Emerging Middle East
- **Currency:** Australian dollar, British pound, Canadian dollar, euro, Japanese yen, New Zealand dollar, Swiss franc

Data Availability
The model generates daily data from Aug. 17, 2009, to the present day.

Currency
The model is available in U.S. dollar.

Morningstar Emerging-Markets Equity Risk Model
The Morningstar Emerging-Markets Equity Risk Model captures risk premiums across the emerging markets in Latin America, Asia-Pacific, Europe, the Middle East, and Africa.

Factors
The model is defined by 30 factors across style, sector, currency, and equity market.

- **Equity Market Factor**
- **Style:** Economic Moat, Financial Health, Liquidity, Momentum, Size, Value-Growth, Volatility, Ownership Popularity, Ownership Risk
- **Sector:** Basic Materials, Energy, Financial Services, Consumer Defensive, Consumer Cyclical, Technology, Industrials, Healthcare, Communication Services, Real Estate, Utilities
- **Region:** Emerging Americas, Emerging Europe, Emerging Asia Pacific, Emerging Middle East and Africa
- **Currency:** Australian dollar, British pound, euro, Japanese yen, Swiss franc

Data Availability
The model generates daily data from Jan. 1, 2008, to the present day.

- **Currency**
- The model is available in U.S. dollar.
Appendix B: Estimation Universe Construction Rules

We outline the estimation universe logic for each model and provide an illustration for the logic below.

Morningstar Global Equity Risk Model

For all securities, we calculate the liquidity and percentile rank of market capitalization at world and country levels at daily frequency. Liquidity is the median dollar trading volume over the past 91 trailing days. We define the percentile rank of market capitalization as \((\text{total market capitalization of companies whose market capitalization is greater than or equal to the company in question}) / \text{(market capitalization of all companies)} \times 100\), where the stock with the largest market capitalization gets the smallest percentile rank. We include the stock of a company into the estimation universe if it satisfies the following four requirements:

- It is among the most-liquid 60% of global stocks
- It is among the most-liquid 60% of country stocks
- It has a percentile rank of global-market capitalization \(\leq 98.5\)
- It has a percentile rank of country-market capitalization \(\leq 97\)

For the U.S. stocks, if the number of stocks that satisfies the four criteria is less than 2,000, we add the most liquid U.S. stocks back into the universe to achieve this total. These U.S. stocks must have a U.S.-size rank \(\leq 2,000\) and have a percentile rank of U.S.-market capitalization \(\leq 99\). The size rank is a rank based on the sum of a stock's market capitalization rank, where the stock with largest market capitalization gets a rank of 1, and its liquidity rank, where the stock with highest liquidity gets a rank of 1. The stock with the lowest sum is given a size rank of 1.

Further, we include shares having a foreign ownership limit, like China A stocks, and we do not use free-float-adjusted market cap.

Morningstar Standard Factor Model

Equity

The equity estimation universe follows the same logic as the Morningstar Global Equity Risk Model. The one key difference is that the Standard model standardizes equity exposures at the region level whereas the Global Equity model standardizes at the global level.

Morningstar Global Multi-Asset Risk Model

Equity

The equity estimation universe follows the same logic as the Morningstar Global Equity Risk Model.
Fixed-Income
There is no estimation universe for the fixed-income portion of the risk model. Factor premiums are derived from the yield curves.

Morningstar Global Equity Risk Model—ESG
The equity estimation universe construction applies the same logic as those of the Morningstar Global Equity Risk Model among the stocks with Sustainalytics ESG Rating. The coverage universe of the model is restricted to stocks with a Sustainalytics ESG Rating. Please refer to the ESG model white paper for more details.

Morningstar United Kingdom Equity Risk Model
Requirements:
► Securities listed on London Stock Exchange and Alternative Investment Market
► Industry Classification is not Asset Management
► No ADRs

Filters:
► Market capitalization > GBP 1 million
► Liquidity > GBP 10,000
► Size rank ≤ 300
► Sector-size rank ≤ 30
► Sector-market capitalization coverage < 95%

Morningstar Eurozone Equity Risk Model
Requirements:
- Securities from the following countries: Austria, Belgium, Cyprus, Germany, Spain, Estonia, Finland, France, Greece, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Portugal
- Industry Classification is not Asset Management
- No ADRs

Filters:
- Market capitalization > EUR 1 million
- Liquidity > EUR 10,000
- Size rank ≤ 550
- Sector-size rank ≤ 30
- Country-size rank ≤ 75
- Sector-country-size rank ≤ 2

Morningstar Europe Equity Risk Model

Requirements:
- Securities from the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom
- Industry Classification is not Asset Management
- No ADRs

Filters:
- Market capitalization > EUR 10 million
- Liquidity > EUR 10,000
- Size rank ≤ 1300
- Sector-size rank ≤ 100
- Country-size rank ≤ 75
- Sector-country-size rank ≤ 5

Morningstar North America Regional Risk Model

Requirements:
- Securities listed on following stock exchanges: New York Stock Exchange, NADAO, American Stock Exchange, NYSE Arca Exchange (NYSE—ARCA, OTC Pink (OTCPK), OTC Bulletin Board (OTCBB),
Better Alternative Trading System (BATS), Toronto Stock Exchange, TSX Venture Exchange, Canadian National Stock Exchange

- No ADRs

Filters:
- Market capitalization > USD 50 million
- Liquidity > USD 10,000
- Size rank ≤ 2500
- Sector-size rank ≤ 300
- Country-U.S.-size rank ≤ 2000
- Sector-Country-size rank ≤ 300
- Sector-market-cap % Canada (Exclude) ≤ 0.55
- Sector-market-cap % USA (Exclude) ≤ 0.70

Morningstar Japan Equity Risk Model

Requirements:
- Industry Classification is not Asset Management
- No ADRs

Requirements:
- Most-liquid 60% of Japan stocks
- Percentile rank of Japan-market capitalization ≤ 97

Morningstar Emerging-Markets Equity Risk Model

The model uses the daily constituents of the Morningstar Emerging Markets Index as the estimation universe. The weights of the stocks in the estimation universe are directly obtained from the index. The construction rules of the index follow a logic similar to the one outlined for the Morningstar Global Equity Risk Model. Further details about the index, including detailed construction and maintenance rules, can be obtained from the Morningstar Indexes website.

An example of the estimation universe logic is depicted below:

Liquidity = the median dollar trading volume over past 91 trailing days
Percentile rank of market capitalization = \{\text{total market capitalization of companies whose market capitalization is greater than or equal to the company in question}\} / \{\text{market capitalization of all companies}\}*100
Size rank = re-ranked(market capitalization rank + liquidity rank)
Exhibit 3 Estimation Universe Construction Logic

Start:

- Within top 60% of most-liquid global stocks
 - Yes
 - No

- Within top 60% of most-liquid country stocks
 - Yes
 - No

- Global market-cap percentile rank ≤ 98.5
 - Yes
 - No

- Country-level market-cap percentile rank ≤ 99
 - Yes
 - No

- U.S. size rank ≤ 2000 or country-level market-cap percentile rank ≤ 97
 - Yes
 - No

- Include in estimation universe
- Exclude from estimation universe

Source: Morningstar.
Appendix C: Equity Factor Exposure Definitions

Interpretation

Style Factors

Our style factors are normalized by subtracting the cross-sectional mean and then dividing by the cross-sectional standard deviation, so a score of 0 can always be interpreted as the average score, and a nonzero score of n can be interpreted as being n standard deviations from the mean. In addition, we modify the sign of our exposures, so the premiums associated with them are generally positive.

Exhibit 4 Style Factors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valuation</td>
<td>The ratio of Morningstar’s quantitative fair value estimate for a company to its current market price. Higher scores indicate cheaper stocks.</td>
</tr>
<tr>
<td>Valuation Uncertainty</td>
<td>The level of uncertainty embedded in the quantitative fair value estimate for a company. Higher scores imply greater uncertainty.</td>
</tr>
<tr>
<td>Economic Moat</td>
<td>A quantitative measure of the strength and sustainability of a firm’s competitive advantages. Higher scores imply stronger competitive advantages.</td>
</tr>
<tr>
<td>Financial Health</td>
<td>A quantitative measure of the strength of a firm’s financial position. Higher scores imply stronger financial health.</td>
</tr>
<tr>
<td>Ownership Risk</td>
<td>A measure of the risk exhibited by the fund managers who own a company. Higher scores imply more risk exhibited by owners of the stock.</td>
</tr>
<tr>
<td>Ownership Popularity</td>
<td>A measure of recent accumulation of shares by fund managers. Higher scores indicate greater recent accumulation by fund managers.</td>
</tr>
<tr>
<td>Liquidity</td>
<td>Share turnover of a company. Higher scores imply more liquidity.</td>
</tr>
<tr>
<td>Size</td>
<td>Market capitalization of a company. Higher scores imply smaller companies.</td>
</tr>
<tr>
<td>Value-Growth</td>
<td>Situation in which a value stock has a low price relative to its book value, earnings, and yield. Higher scores imply firms that are more growth and less value oriented.</td>
</tr>
<tr>
<td>Value-Growth (standard model)</td>
<td>Uses the Morningstar Style Box raw style score for calculating value/growth characteristics. Higher scores imply firms that are more growth and less value oriented.</td>
</tr>
<tr>
<td>Momentum</td>
<td>Total return momentum over the horizon from negative 12 months through negative two months. Higher scores imply greater return momentum.</td>
</tr>
<tr>
<td>Volatility</td>
<td>Total return volatility as measured by largest minus smallest one-month returns in a trailing 12-month horizon. Higher scores imply greater return volatility.</td>
</tr>
<tr>
<td>Volatility (standard model)</td>
<td>A combination of three volatility proxies (1) Idiosyncratic volatility (IVOL, 50%): the volatility of residual returns over the past six months; (2) Total volatility (TVOL, 25%): the volatility of daily total returns over the past six months; (3) MAXG (25%): the average of the highest five daily returns over the past 1 month.</td>
</tr>
<tr>
<td>Quality</td>
<td>A quality firm is one with high profitability and low financial leverage. High scores imply high quality firms.</td>
</tr>
<tr>
<td>Yield</td>
<td>A measure of a firm’s total yield (dividend plus buyback). High scores imply high yielding firms.</td>
</tr>
<tr>
<td>ESG Rating</td>
<td>ESG Rating factor describes how well a company manages ESG-related issues according to Sustainalytics ESG rating criteria. A higher exposure indicates better management of ESG issues.</td>
</tr>
</tbody>
</table>

Source: Morningstar.
Sector Factors
Our sector factors measure the economic exposure of a company to the Morningstar sectors. We perform a Bayesian time-series regression analysis to find the exposures of an individual company to the sector return with a prior based on the discrete sector classification of Morningstar’s data analysts. We enforce constraints that our sector exposures, including the intercept term, must sum to 1 and must individually be between 0 and 1.

Region Factors
Our region factors represent the economic exposure of a company to the Morningstar regions. We perform a Bayesian time-series regression analysis to find the exposures of an individual company to the return of the portfolio of stocks in the region with a prior based on the discrete region classification of Morningstar’s data analysts.

Currency Factors
Our currency factors represent the economic exposure of a company to major currencies, excluding U.S. dollars. We perform a time-series regression analysis to find the exposures of an individual company’s return denominated in U.S. dollar currency to the following list of currency returns: Australian dollar, British pound, Canadian dollar, euro, Japanese yen, New Zealand dollar, and Swiss franc. We calculate the return of these currencies against the U.S. dollar.

Style Factor Definitions
Valuation
The valuation factor is the normalized ratio of Morningstar’s Quantitative Fair Value Estimate to the current market price of a security. It represents how cheap or expensive a stock is relative to its fair value. We arrive at a quantitative fair value estimate using an algorithm that extrapolates from the roughly 1,400 valuations our equity analyst staff assigns to stocks to a coverage universe of more than 45,000 stocks. For a detailed explanation of this methodology, refer to the Morningstar Quantitative Equity Ratings methodology document cited in the References section.

The factor is unbounded, and higher scores indicate cheaper stocks. A score of 0 indicates an average valuation.

Valuation Uncertainty
The valuation uncertainty factor is the normalized value of Morningstar’s Quantitative Valuation Uncertainty Score. It represents the standard error of Morningstar’s quantitative valuation—in other words, how unsure we are of a particular valuation. For a detailed explanation of this methodology, refer to the Morningstar Quantitative Equity Ratings methodology document cited in the References section.

The factor is unbounded, and higher scores indicate more-uncertain valuations. A score of 0 indicates an average level of uncertainty.
Economic Moat
The economic moat factor is the normalized value of Morningstar’s Quantitative Moat Score. It represents the strength and sustainability of a firm’s competitive advantages. We arrive at a moat score using an algorithm that extrapolates from the roughly 1,400 Morningstar Economic Moat Ratings our equity analyst staff assigns to stocks to a coverage universe of more than 45,000 stocks.
For a detailed explanation of this methodology, refer to the Morningstar Quantitative Equity Ratings methodology document cited in the References section.

The factor is unbounded, and higher scores indicate stronger and more-sustainable competitive advantages. A score of 0 indicates an average level of competitive advantages.

Financial Health
The financial health factor is the normalized value of Morningstar’s Quantitative Financial Health score. It represents the strength of a firm’s financial position. The financial health score is driven by market inputs, making it responsive to new information. It is calculated as follows.

\[QFH = 1 - \frac{(EQVOLP + EVMVP + EQVOLP \times EVMVP)}{3} \]

Where:
\[EQVOLP = \text{percentile rank trailing 300 day equity return volatility} \]
\[EVMVP = \text{percentile rank of } \frac{\text{Enterprise Value}}{\text{Market Capitalization}} \]

The factor is unbounded, and higher scores indicate stronger financial health. A score of 0 indicates an average level of financial health.

Ownership Risk
The ownership risk factor represents, for a particular stock, the ownership preferences of fund managers with different levels of risk exposure. The factor relies on current portfolio holdings information and the raw 36-month Morningstar Risk rating. High ownership risk scores signify that those stocks are currently owned and preferred by fund managers with high levels of Morningstar Risk. If high-risk managers are purchasing these stocks, then those stocks are likely to be high risk. A stock’s characteristic is therefore defined by who owns it.

The ownership risk score is calculated in the following manner:

\[Ownership \ Risk_n = \sum_{m=1}^{N} v_{mn}^{MRISK36_m} \]
Where:

\[v_{m,n} = \frac{w_{m,n}}{\sum_{m=1}^{M} w_{m,n}} \]

MRISK36 = Morningstar Risk Score 36 – month

The ownership risk score for stock n is the weighted average of each manager m’s 36-month Morningstar Risk score multiplied by the relative weight he or she holds in stock. After raw scores are calculated, ownership risk scores are cross-sectionally normalized.

The factor is unbounded, and higher scores indicate stronger ownership preference for risk. A score of 0 indicates an average level of ownership preference for risk.

Ownership Popularity

The ownership popularity factor represents the growth in the popularity of a particular stock from the perspective of fund manager ownership. It relies on current and past portfolio holdings information. High ownership popularity scores signify that more funds have gone long the stock relative to those that have gone short the stock in the past three months.

The factor is calculated in the following manner:

\[Ownership \ Popularity_n = \frac{1}{T} \sum_{t=1}^{T} \frac{O_{n,t} - O_{n,t-1}}{O_{n,t-1}} \]

\[O_{n,t} = \sum_{m=1}^{M} v_{m,n,t} \text{Net Long}_{m,t} \]

Where:

\[v_{m,n,t} = \frac{w_{m,n,t}}{\sum_{m=1}^{M} w_{m,n,t}} \]

\[\text{Net Long}_{m,t} = \begin{cases}
-1 & \text{if } w_{m,n,t} < 0 \\
0 & \text{if } w_{m,n,t} = 0 \\
1 & \text{if } w_{m,n,t} > 0
\end{cases} \]

The ownership popularity score for stock n is the average growth in ownership over the past three months. Ownership is the weighted average of each manager m’s net long score multiplied by the relative weight he or she holds in stock. After raw scores are calculated, ownership popularity scores are cross-sectionally normalized.
The factor is unbounded, and higher scores indicate stronger ownership preference. A score of 0 indicates an average level of ownership preference.

Size
The size factor is the normalized value of the logarithm of a firm’s market capitalization:

\[
s_{it} = -\ln(MV_{it})
\]

The factor is unbounded, and higher scores indicate smaller market capitalization. A score of 0 indicates an average level of market capitalization.

Liquidity
The liquidity factor is the normalized value of the stock’s raw share turnover. The raw share turnover score is calculated as the logarithm of the average trading volume divided by shares outstanding over the past 30 days. It is essentially a churn rate for a stock and represents how frequently a stock’s shares get traded.

\[
share\ turnover_{it} = \ln \left(\frac{1}{T} \sum_{t=1}^{T} \frac{V_{it}}{SO_{it}} \right), \text{ where } T = 30
\]

The factor is unbounded, and higher scores indicate higher liquidity. A score of 0 indicates an average level of liquidity.

Value-Growth
Value-growth is a reflection of the aggregate expectations of market participants for the future growth and required rate of return for a stock. We infer these expectations from the relation between current market prices and future growth and cost-of-capital expectations under the assumption of rational market participants and a simple model of stock value.

The factor is unbounded, and higher scores indicate higher growth expectations and less value exposure. A score of 0 is average.

Value-Growth (standard model)
Value-growth reflects the aggregate expectations of market participants for the future growth and required rate of return for a stock. For this version used in the Standard Factor model, we use the raw style score from the Style Box as the input for calculating the value-growth exposure of stocks. The raw style score is calculated as the difference between a stock’s growth score and value score:

\[
Raw\ Style\ Score = Growth\ Score - Value\ Score.
\]
The value score is the weighted average of a stock’s prospective earnings (E), book value (BV), revenue (R), cash flow (CF), and dividend (D), all scaled by the current price of the stock:

\[Value \, Score = \left[w_E \times \frac{E}{P_t} + w_{BV} \times \frac{BV}{P_t} + w_R \times \frac{R}{P_t} + w_{CF} \times \frac{CV}{P_t} + w_D \times \frac{D}{P_t} \right]. \]

The growth score of a stock is the weighted average of the growth rates in a company’s earnings (E), book value (BV), revenue (R), and cash flow (CF):

\[Growth \, Score = \left[w_E \times E_{growth} + w_{BV} \times BV_{growth} + w_R \times R_{growth} + w_{CF} \times CF_{growth} \right]. \]

The factor is unbounded, and higher scores indicate higher growth expectations and less value exposure. A score of 0 is average. For more details, refer to the Morningstar Style Box Methodology listed in the References section.

Momentum

The Momentum factor is the normalized value of the stock price’s raw momentum score. The raw momentum score is calculated as the cumulative return of a stock from 365 calendar days ago to 30 days ago. This is the classical 12-1 momentum formulation except using daily return data as opposed to monthly. To compute, U.S. dollar currency returns are used.

\[momentum_{it} = \sum_{t=365}^{t-30} \left(\ln(1 + r_{it}) - \ln(1 + r_{ft}) \right) \]

The factor is unbounded, and higher scores indicate higher returns over the past year as well as a propensity for higher returns in the future. A score of 0 indicates an average level of momentum.

Volatility

The volatility factor is the normalized range of annual cumulative returns over the past year. Each day, we compute the trailing 12-month cumulative return. Then, we look over the past year and identify the maximum and minimum 12-month cumulative returns. We compute the range by taking the maximum minus the minimum 12-month cumulative returns.

\[range_i = \left(\ln(1 + r_{it}) - \ln(1 + r_{ft}) \right)^{\text{max}} - \left(\ln(1 + r_{it}) - \ln(1 + r_{ft}) \right)^{\text{min}} \]

The factor is unbounded, and higher scores indicate higher volatility. A score of 0 indicates an average level of volatility.

Volatility (standard model)

The firm-specific volatility is a combination of three standardized volatility proxies:

\[Volatility \, Composite = 50\% \times IVOL_x + 25\% \times TVOL_x + 25\% \times MAX5_x \]
(1) IVOL (six-month horizon, 50%):
Idiosyncratic volatility (IVOL) is the capital asset pricing model’s (CAPM) residual volatility over the past six months. We estimate a time-series regression of excess daily stock return against the value-weighted excess daily market return of the estimation universe. The IVOL is the standard deviation of the CAPM residuals. We standardize IVOL to obtain its z-score.

\[CAPM: r_{it} - r_{ft} = \alpha_{i,t} + \beta_t (r_{mt} - r_{ft}) + \epsilon_{i,t} \]

\[IVOL: \sigma_{i,t} = \text{std}(\epsilon_{i,t}) \]

(2) TVOL (six-month horizon, 25%):
Total volatility (TVOL) is defined as the volatility of a stock’s daily returns over the past six months. We standardize TVOL to obtain its z-score.

\[TVOL = \sqrt{\frac{\sum_{t=1}^{N} (r_t - \bar{r}_t)^2}{N - 1}} \]

(3) MAX5 (one-month horizon, 25%):
MAX5 is defined as the average of the highest five daily returns over the past one month. We standardize MAX5 to obtain its z-score.

The factor is unbounded, and higher scores indicate higher volatility. A score of 0 indicates an average level of volatility.

Quality
We define a quality score of a stock as the equally weighted z-score of a company’s profitability (trailing 12-month return on equity) and the z-score of its financial leverage (trailing 12-month debt/capital). The z-score is with respect to all the stocks in the global universe.

\[Quality = \frac{1}{2}\left[ROE_z + \left(1 - \frac{\text{Total Debt}_z}{\text{Total Capital}_z} \right) \right] \]

where ROE is the trailing 12-month return on equity and the subscript z indicates a z-score.

The factor is unbounded, and higher scores indicate higher quality. A score of 0 indicates an average level of quality.

Yield
The yield factor is as a total yield, which is the sum of trailing 12-month buyback and dividend yield of a company. Higher values indicate larger, positive yield exposure:

\[\text{Total Yield} = \text{Buyback Yield}_{ttm} + \text{Dividend Yield}_{ttm} \]
The factor is unbounded, and higher scores indicate higher yield. A score of 0 indicates an average level of quality.

ESG Rating
The ESG Rating factor is constructed based on Sustainalytics ESG Rating, which measures how well companies manage various ESG-related issues. Sustainalytics’ ESG Rating starts from August 2009. Before 20 Sept 2019, the rating is based on their best-in-class rating framework, where each industry has a different rating structure. A higher ESG Rating indicates a company ranks better according to ESG criteria when compared with their industry peers. From 20 Sept 2019, Sustainalytics provides a new ESG Risk Rating, where a higher ESG Risk Rating indicates a company has higher ESG risks when compared with all other stocks in the rating universe. In the ESG Risk framework, a lower rating indicates a company ranks better according to the ESG criteria. The rating is on an absolute scale so a company’s ESG Risk Rating is not compared with industry peers but the overall universe.

To provide a consistent interpretation of the ESG factor, the following transformations have been applied. First, the total ESG Rating before 20 Sept 2019 is standardized within an industry every day so that the industry average rating is zero and the standard deviation of the rating is one. Second, the ESG Risk Rating from 20 Sept 2019 is transformed by \((100 - \text{ESG Risk Rating})\). Lastly, both the standardized total ESG Rating and the transformed ESG Risk Rating are standardized among the estimation universe of the risk model every day to ensure the average ESG Rating of the universe is zero and the standard deviation of the rating is one. With these transformations, a higher ESG Rating indicates better ESG performance among industry peers before 20 Sept 2019 and among the rating universe after this date.

Sector Factor Definitions
Sector exposures are calculated based on a time-series regression of excess stock returns to a set of sector benchmarks.

\[
r_t^i - r_t^f = \alpha_t^i + \beta_1^i (r_t^1 - r_t^f) + \cdots + \beta_k^i (r_t^k - r_t^f) + \epsilon_t^i
\]

- \(r_t^i = \text{weekly return on the } i\text{th stock}\)
- \(r_t^f = \text{weekly return on 3 – mo US TBill}\)
- \(r_t^k = \text{weekly return on the } k\text{th sector benchmark (for example, Basic Materials)}\)

Constraints: \(0 < \beta_k^i < 1; \sum \beta_k^i = 1\)

Benchmark Construction
Sector benchmark returns are calculated using a market-cap-weighting scheme using stocks from our estimation universe. Stocks are assigned to sectors on the basis of Global Sector ID. All returns are computed in U.S. dollars. Market capitalizations were also converted to dollars prior to benchmark constitution.
Regression Setup

Regressions are five years in length and are run on a rolling, weekly frequency. In the case where a stock does not have five years of history, we run the time-series regression back to the inception date. If a stock has less than one year of history, we do not run the regression and instead default to the stock's Morningstar sector classification. We employ a Bayesian prior that presupposes that companies should be entirely exposed to the sector to which they are assigned.

Sectors

Below is the complete list of sectors available to be included in the multivariate regression. Note, depending on the factor list of each model, only a subset could be used.

- Basic Materials
- Energy
- Financial Services
- Consumer Defensive
- Consumer Cyclical
- Technology
- Industrials
- Healthcare
- Communication Services
- Real Estate
- Utilities

Interpretation

Sector exposures are bounded between 0 and 1. They must jointly (including the intercept) sum to 1. Higher scores indicate higher levels of sensitivity to individual sectors.

Region Factor Definitions

Regional exposures are calculated based on a time-series regression of excess stock returns to a set of region benchmarks.

\[
\begin{align*}
 r_i^t - r_{f}^t &= \alpha_i + \beta_1^i (r_1^t - r_{f}^t) + \cdots + \beta_k^i (r_k^t - r_{f}^t) + \epsilon_t^i \\
 r_i^t &= \text{weekly return on the } i\text{th stock} \\
 r_{f}^t &= \text{weekly return on 3 - mo US TBill} \\
 r_k^t &= \text{weekly return on the } k\text{th region benchmark (for example, Developed North America)} \\
 \text{constraints: } 0 < \beta_k^i < 1; \sum_k \beta_k^i = 1
\end{align*}
\]
Benchmark Construction
Region benchmark returns are calculated using a market-cap-weighting scheme using stocks from our estimation universe. Stocks are assigned to regions on the basis of company-level Country ID. All returns are computed in U.S. dollars. Market capitalizations were also converted to dollars prior to benchmark constitution.

Regression Setup
Regressions are five years in length and are run on a rolling, weekly frequency. In the case where a stock does not have five years of history, we run the time-series regression back to the inception date. If a stock has less than one year of history, we do not run the regression and instead default to the stock's Morningstar region classification based on country of domicile. We employ a Bayesian prior that presupposes that companies should be entirely exposed to the region in which their company-level Country ID belongs.

Regions
Below is the complete list of regions available to be included in the multivariate regression. Note, depending on the factor list of each model, only a subset could be used.

- Developed North America
- Developed Europe
- Developed Asia Pacific
- Emerging Latin America
- Emerging Europe
- Emerging Asia Pacific
- Emerging Middle East & Africa
Exhibit 4 Map of Countries to Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Country List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Asia Pacific</td>
<td>Australia, Hong Kong</td>
</tr>
<tr>
<td></td>
<td>Japan, New Zealand</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>Austria, Belgium</td>
</tr>
<tr>
<td></td>
<td>Switzerland, Germany</td>
</tr>
<tr>
<td></td>
<td>Denmark, Spain</td>
</tr>
<tr>
<td></td>
<td>Finland, France</td>
</tr>
<tr>
<td></td>
<td>United Kingdom, Greece</td>
</tr>
<tr>
<td></td>
<td>Ireland, Israel</td>
</tr>
<tr>
<td>Developed North America</td>
<td>United States, Canada</td>
</tr>
<tr>
<td>Emerging Asia</td>
<td>China, Indonesia, India</td>
</tr>
<tr>
<td></td>
<td>South Korea, Malaysia, Philippines</td>
</tr>
<tr>
<td>Emerging Europe</td>
<td>Bulgaria, Czech Republic</td>
</tr>
<tr>
<td></td>
<td>Estonia, Hungary, Iceland</td>
</tr>
<tr>
<td></td>
<td>Lithuania, Luxembourg, Latvia, Malta, Poland</td>
</tr>
<tr>
<td>Emerging Latin America</td>
<td>Argentina, Brazil, Chile</td>
</tr>
<tr>
<td></td>
<td>Colombia, Mexico, Peru</td>
</tr>
<tr>
<td>Emerging Middle East & Africa</td>
<td>United Arab Emirates, Bangladesh, Bahrain, Cyprus, Egypt</td>
</tr>
<tr>
<td></td>
<td>Kuwait, Morocco, Nigeria, Oman, Pakistan</td>
</tr>
</tbody>
</table>

Source: Morningstar as of May 2021.

Interpretation

Region exposures are bounded between 0 and 1. They must jointly (including the intercept) sum to 1. Higher scores indicate higher levels of sensitivity to individual regions.

Currency Factor Definitions

Currency exposures are calculated based on a time-series quantile regression of excess stock returns to a set of exchange rates:

\[r_t^i - r_t^f = \alpha^i + \beta_1^i (r_t^1) + \cdots + \beta_k^i (r_t^k) + \epsilon_t^i \]

- \(r_t^i \) = weekly return on the ith stock
- \(r_t^f \) = weekly return on 3-month US TBill
- \(r_t^k \) = weekly return on the kth exchange rate return (for example, % change in EUR/USD)
Regression Setup
Regressions are five years in length and are run on a rolling, weekly frequency. In the case where a stock does not have five years of history, we run the time-series regression back to the inception date. Stock returns are calculated in U.S. dollars.

Currencies
Below is the complete list of currencies available to be included in the multivariate regression. Note, depending on the factor list of each model, a subset of these currencies may be used. For example, the Morningstar U.K. Equity Risk Model includes the U.S. dollar but not the British pound.

- euro
- Japanese yen
- British pound
- Swiss franc
- Canadian dollar
- Australian dollar
- New Zealand dollar
- U.S. dollar

Interpretation
Currency exposures are unbounded but generally fall between negative 1 and 1. Higher scores indicate higher levels of sensitivity to individual exchange-rate fluctuations.
Appendix D: Fixed-Income Factor Exposures

The factors driving fixed-income returns can be best understood by examining the basic bond valuation formula. This is the simplest arbitrage-free model of security valuation, applicable to bonds with fixed cash flows, and serves as a valuable starting point for understanding fixed-income modeling. The present value of a bond is simply the sum of the present values of the cash flows, with discount rates given by the term structure of interest rates:

\[
PV_{Bond} = \sum_{t=1}^{y} CF_t \cdot e^{-r_t \cdot t}
\]

The valuation formula states that the present value \(PV_{Bond} \) of a bond is the sum of cash flows \(CF_t \) at times \(t \) discounted by the time \(t \) interest rates \(r_t \). The valuation formula makes clear that changes in bond prices, or bond returns, are driven by changes in the expected cash flows and/or changes in the appropriate discount rates. For a risk-free fixed-coupon bond, the cash flows are the coupon and the principal payments, and the interest rates are the prevailing risk-free rates. The valuation formula becomes more complex when we leave the realm of risk-free fixed-coupon bonds because the cash flows may be state- or even history-dependent, and the discount rates include a spread to compensate investors for the additional risks. We plan to tackle these risks in future releases of the multi-asset model.

Carry

Carry is the return earned due to the passage of time. In some sense, this is riskless, in that the carry earned over a period is known ex-ante. It is composed of coupon return and roll return.

The coupon accrues deterministically. The coupon return between \(t_1 \) and \(t_2 \) is:

\[
r_{Coupon} = \frac{AI(t_2) - AI(t_1) + C(t_1, t_2)}{P(t_1) + AI(t_1)}
\]

Where:

- \(AI(t_i) \) = The accrued interest at time \(i \)
- \(C(t_1, t_2) \) = The coupon paid between \(t_1 \) and \(t_2 \)
- \(P(t_i) \) = The clean price at time \(i \)
The roll return is the return due to the change in the clean price caused by the passage of time from \(t_1 \) to \(t_2 \), based on the yield curve at \(t_1 \). There are two drivers of roll return. First, we are discounting all future cash flows to \(t_2 \) instead of \(t_1 \). Second, these future cash flows occur at different points on the yield curve relative to \(t_2 \) than they do relative to \(t_1 \). Despite keeping the yield curve constant, the interest rate used to discount each cash flow is different. The roll return between \(t_1 \) and \(t_2 \) is:

\[
\begin{align*}
 r_{Roll} &= \frac{P(t_2, y_1) - P(t_1, y_1)}{P(t_1, y_1)} + AI(t_i)
\end{align*}
\]

Where:

- \(AI(t_i) \) = The accrued interest at time \(i \)
- \(P(t_i, y_j) \) = The clean price at time \(i \) using the yield curve that prevailed at time \(j \)

Specifically:

- \(P(t_2, y_1) \) = The clean price at time \(t_2 \) using the yield curve that prevailed at time \(t_1 \)
- \(P(t_1, y_1) \) = The clean price at time \(t_1 \) using the yield curve that prevailed at time \(t_1 \)

Finally, carry return is the sum of coupon return and roll return:

\[
\begin{align*}
 r_{Carry} &= r_{Coupon} + r_{Roll}
\end{align*}
\]

In our risk models, we capture this return by using yield to maturity. That is:

\[
\begin{align*}
 r_{Carry} &\approx YTM_i \times (t_2 - t_1)
\end{align*}
\]

Where:

- \(YTM_i \) = The yield to maturity at time \(i \)
- \((t_j - t_i) \) = The time elapsed between time \(i \) and time \(j \) measured in years

This is algebraically equivalent to the formula above, up to a second-order approximation. In our risk models, we use yield to maturity (which is security specific) as the exposure to the carry factor, and the elapsed time (which is common across securities) as the carry factor premium. In this way, the exposure of any fund or security to carry is its yield.

Risk-Free Rate Changes

The most important return drivers for most fixed-income securities, apart from high-yield instruments, are changes in the government yield curves in their respective markets. These changes affect the value of all fixed-income instruments because they change the marketwide risk-free discount rates. Our risk modeling suite offers the most common model of bond return sensitivity to yield-curve changes: Duration and Convexity. Duration and Convexity reflect the exposure of bond returns to risk-free-interest-rate movements. In this model, premiums are the changes in the government yield curve, measured in the appropriate way. This model captures the interest-rate component of USD-, EUR-, GBP-, CHF-, and CAD-denominated bond returns.
There are several models of government yield-curve movements. Our model uses the Nelson-Siegel approach to measure changes in the overall level of interest rates.

Duration and Convexity Model

As shown in the present value formula above, the price of a bond is a function of the interest rates used to discount its cash flows. The single discount rate, \(y \), that equates the discounted cash flows to the current price is the bond’s current yield to maturity, and price is then a function of yield, written \(P(y) \).

By using a Taylor Series approximation, we find that Duration and Convexity are simply the sensitivities of the bond price to changes in \(y \), as outlined in Hull:

\[
R_t = -D_{t-1} \cdot \Delta y_t + \frac{1}{2} C_{t-1}(\Delta y_t)^2 + s_t
\]

Where:

- \(R_t \): Daily price return (total return — income return)
- \(D_{t-1} \): Modified Duration of the security
- \(C_{t-1} \): Convexity of the security
- \(\Delta y_t \): Change in \(y \) from day \(t - 1 \) to day \(t \), described by the Nelson-Siegel method below
- \(s_t \): Idiosyncratic return (residual return)

Nelson-Siegel Yield-Curve Fitting

In their 1987 paper, Nelson and Siegel provided a model for yield as a function of maturity, which is dependent on only four parameters: \(\beta_0, \beta_1, \beta_2, \) and \(\tau \), where \(\beta_0 \) reflects the overall level of rates, \(\beta_1 \) reflects the steepness of the yield curve, \(\beta_2 \) reflects any hump or curvature, and \(\tau \) reflects the location along the yield curve of the steepness and hump:

\[
y(m) = \beta_0 + \beta_1 \frac{1 - \exp(-m/\tau)}{m/\tau} + \beta_2 \left[\frac{1 - \exp(-m/\tau)}{m/\tau} - \exp(-m/\tau) \right]
\]

This model is fit for the yield curve every day. Since \(\beta_0 \) reflects the overall level of rates, in our equation above for \(R_t \), we use:

\[
\Delta y_t = \beta_{0,t} - \beta_{0,t-1} = \text{Change in } \beta_0 \text{ from day } t - 1 \text{ to day } t
\]

When fitting the model, Nelson and Siegel found that rather than fitting \(\tau \) each day, using the best value of \(\tau \) (over the time horizon) produces results that are about as precise, with the benefit of fitting three parameters each day rather than four. We follow this approach as well, using a grid search to identify the optimal value of \(\tau \), which we reevaluate periodically.
Appendix E: Cross-Sectional Regression

After deciding on the universe of securities to include in the model and gathering quality input data, the next important step in risk model construction is to run the cross-sectional regression. There are numerous techniques and specifications we can employ in the regression; the following method has been chosen to provide accurate, meaningful, and stable estimates of factor premiums. Special care has been given to deal with the common multicollinearity issue associated with sector and region factors. As the sum of all sectors and regions are both the entire universe of securities, it is difficult to estimate the pure sector and region effects that are uncorrelated with each other. We apply a constrained regression to disentangle the sector and region effects from each other, as well as from the overall market movement.

The Constrained Regression

The return of a security r_i in the cross section can be explained as

$$r_i = \alpha + \sum_{m=1}^{M} X_{i,m} f_{m}^{Style} + \sum_{s=1}^{S} X_{i,s} f_{s}^{Sector} + \sum_{r=1}^{R} X_{i,r} f_{r}^{Region} + \sum_{c=1}^{C} X_{i,c} f_{c}^{Currency} + \epsilon_i \quad (E1)$$

where $X_{i,m}, X_{i,s}, X_{i,r}, X_{i,c}$ are security i's exposure to style factor m, sector s, region r, and currency c; $f_{m}^{Style}, f_{s}^{Sector}, f_{r}^{Region}, f_{c}^{Currency}$ are factor premiums for style m, sector s, region r, and currency c; M, S, R, C are the total number of style, sector, region, and currency factors in a particular model; α is the intercept; and ϵ_i is the residual term, representing a stock's specific return.

In the estimation, the market-cap-weighted average sector premiums and region premiums are both constrained to zero:

$$\sum_{s=1}^{S} u_s f_s^{Sector} = \sum_{r=1}^{R} v_r f_r^{Region} = 0 \quad (E2)$$

where u_s and v_r are the market-cap weights of sector s and region r, respectively. This means certain sectors and regions earn positive returns and others earn negative, but the market-cap-weighted average sector and region returns are zero.

To understand the logic of these constraints, imagine an investor who has a portfolio that has the same sector and region composition as the entire market; the region and sector average return from this portfolio should not contribute extra return to the market because the sum of sectors and regions are both the market. But what captures the market return in this setting? It turns out that under certain conditions, the estimated α is a good proxy for the market.

The Equity Market Factor

The intercept is represented by a column of 1 in the exposure table, and it can be viewed as stocks' exposure to a factor. To what factor does every stock have the same level of exposure? It should be a
factor that represents the equity market universe, and an exposure of 1 indicates membership in this
universe. For this reason, the estimated \(\alpha \) can approximate the overall equity market return; we name it
the "equity market factor." The approximation becomes accurate with some additional conditions.

In addition to the constraints on sector and region premiums, all style factor exposures are standardized
cross-sectionally to have a market-cap-weighted mean of zero:

\[
\tilde{X}_m = \sum_{i=1}^{N} w_i X_{i,m} = 0 \quad (E3)
\]

where

\(\tilde{X}_m \) = market-cap-weighted average exposure of the estimation universe to factor \(m \),

\(w_i \) = market-cap weight of security \(i \),

\(X_{i,m} \) = security \(i \)'s exposure to style factor \(m \).

This standardization ensures the overall market is style-neutral. Now, consider aggregating the market-
cap-weighted estimation universe as

\[
r_E = \alpha + \sum_{m=1}^{M} \tilde{X}_m f_m^\text{Style} + \sum_{s=1}^{S} u_s f_s^\text{Sector} + \sum_{r=1}^{R} v_r f_r^\text{Region} + \sum_{c=1}^{C} \tilde{r}_c f_c^\text{Currency} + \sum_{i=1}^{N} w_i \epsilon_i \quad (E4)
\]

where \(r_E \) is the market-cap-weighted average return. Note, by equations (E2) and (E3), the second to
the fourth items on the right-hand side become zero. The last term of weighted residuals equals zero
because in a least-squares estimation the residual term is orthogonal to the independent variables
including the intercept of 1s. Although we do not standardize the currency exposures, the impact of
currency return is limited. Therefore, the estimated \(\alpha \) can approximate closely the market-cap-weighted
average return of the estimation universe.

Note that the regression has been weighted using the square root of the market-cap weight of each
stock in the estimation universe. This is to reduce the uneven variability of the specific returns among
stocks, which improves the statistical properties of premium estimates. In this case, the weighted sum
of residuals in equation (E4) is only approximately zero.

To sum up, with the constrained regression, the sector and region premiums measure the pure and
uncorrelated sector and region returns relative to the overall market return, captured by \(\alpha \), \(\alpha + f_s^\text{Sector} \)
approximates the return of a geographically diversified portfolio of companies in sector \(s \). "Geographically
diversified" means the portfolio has the same market-cap-weighted region composition as the equity
market universe and is free from any additional region effects. Similarly, \(\alpha + f_r^\text{Region} \) gives the return of
a portfolio of stocks that is sector diversified as the equity market universe.
Appendix F: Forecast Factor Comovement and Residual Volatility

Asset Returns Covariance Model
The risk model cross-sectional regression models stock returns at time t as

$$ R_t = X_t \cdot f_t + S_t $$

where:

- $R_t = N \times 1$ vector of asset returns at time t
- $X_t = N \times K$ matrix of asset-level factor exposures at time t
- $f_t = K \times 1$ vector of factor returns (factor premiums) at time t
- $S_t = N \times 1$ vector of asset-level specific returns (residual returns) at time t

We model the $N \times N$ variance-covariance matrix of asset returns at time t, V_t, as:

$$ V_t = X_t \cdot F_t \cdot X_t^T + \Delta_t $$

where:

- $V_t = N \times N$ variance-covariance matrix of asset returns
- $F_t = K \times K$ variance-covariance matrix of the factor returns (factor premiums)
- $\Delta_t = N \times N$ variance matrix of the specific returns S (diagonal matrix of specific variance)

That is, the covariances between factor premiums are included in the model, but residual returns are assumed to be independent of each other and of the factor premiums.

Portfolio Returns Variance Model
A portfolio is described at time t by an $N \times 1$ vector w_t^P that gives the portfolio’s holding-weights in N assets. The portfolio’s $K \times 1$ vector of factor exposures x_t^P is given by the product of the asset-level factor exposures X_t and the holdings weights w_t^P:

$$ x_t^P = X_t^T \cdot w_t^P $$

The portfolio’s return at time t, r_t^P, is modeled as

$$ r_t^P = (x_t^P)^T \cdot f_t + (w_t^P)^T \cdot S_t $$

and the portfolio’s variance at time t, V_t^P, is modeled as

$$ V_t^P = (x_t^P)^T \cdot F_t \cdot x_t^P + (w_t^P)^T \cdot \Delta_t \cdot w_t^P $$

Exponentially Weighted Moving Estimates and Forecasts
For the EWM-estimate model, we assume there is no autocorrelation in the portfolio returns so that the variance over the forecast horizon is the sum of variance estimates for each period of the forecast.
horizon. Additionally, the nature of EWM-estimates is that forecasts beyond time t equal the estimate at time t.

So, to produce forecasts of portfolio volatility at time t, over the forecast horizon, $[t + 1, t + \text{horizon}]$, the task is to estimate F_t and Δ_t given historical data up to and including time t, and then, for a given portfolio: calculate V^P_t, multiply by the horizon length, and take the square root.

Our approach to modeling F_t, as an EWM-estimate, is to separately estimate the factor premiums standard deviations and factor premiums correlation matrix, over a historical window of fixed length, using a different half-life for each, and then combine them into a covariance matrix.

The factor-j premium standard deviation, $\sigma_{t,j}$, is estimated as follows.

$$\delta_1 = \left(\frac{1}{2}\right) \tau_1$$
$$z_{1,t-i} = \left(\frac{1 - \delta_1}{1 - \delta_1 W}\right) \delta_1^i$$
$$m_{1,t} = \sum_{i=0}^{W-1} z_{1,t-i} \times f_{t-i}$$
$$\sigma_{t,j} = \sqrt{\sum_{i=0}^{W-1} z_{1,t-i} \times \left[f_{t-i} - m_{1,t}\right]^2}$$

where
- τ_1 is the half-life for standard deviation
- δ_1 is the decay rate for standard deviation
- W is historical data window size for covariance
- $z_{1,t-i}$ is the exponential weight for time $t - i$, for standard deviation
- $m_{1,t}$ is the $K \times 1$ exponentially weighted mean premiums vector estimate for time t for standard deviation
- $[\nu]^i_j$ denotes the j^{th} element of the vector ν
- $\sigma_{t,j}$ is the exponentially weighted factor-j premium standard deviation estimate for time t
The factor premiums correlation matrix, C_t, is estimated as follows.

$$\delta_2 = \left(\frac{1}{2}\right)^{\frac{1}{\tau_2}}$$

$$z_{2,t-i} = \left(1 - \frac{\delta_2}{1 - \delta_2^2}\right)\delta_2^i$$

$$m_{2,t} = \sum_{i=0}^{w-1} z_{2,t-i} \cdot f_{t-i}$$

$$\tilde{C}_t = \sum_{i=0}^{w-1} z_{2,t-i} \cdot (f_{t-i} - m_{2,t}) \cdot (f_{t-i} - m_{2,t})^T$$

$$C_t = diag(\tilde{C}_t)^{-1/2} \cdot \tilde{C}_t \cdot diag(\tilde{C}_t)^{-1/2}$$

where

- τ_2 is the half-life for correlation
- δ_2 is the decay rate for correlation
- $z_{2,t-i}$ is the exponential weight for time $t - i$, for correlation
- $m_{2,t}$ is the $K \times 1$ exponentially weighted mean premiums vector estimate for time t for correlation
- \tilde{C}_t is the $K \times K$ exponentially weighted factor premiums covariance matrix estimate for time t, using the correlation half-life τ_2
- C_t is the $K \times K$ exponentially weighted factor premiums correlation matrix estimate for time t
- $\text{diag}(A)$ denotes the diagonal matrix of the matrix A.

Let Σ_t be the $K \times K$ diagonal matrix with vector $[\sigma_{t,1}, \ldots, \sigma_{t,K}]$ along the diagonal. Then

$$F_t = \Sigma_t \cdot C_t \cdot \Sigma_t$$

so that the i-th, j-th entry of F_t is

$$(F_t)_{ij} = \sigma_{t,i} \cdot \rho_{t,ij} \cdot \sigma_{t,j}$$

The half-lives τ_1 and τ_2 are selected to maximize the back-test average of the average log-likelihood of the demeaned, observed premiums over a given forecast horizon, H, assuming a multivariate Gaussian distribution with covariance F_t and mean of zero. That is

$$(\tau_1, \tau_2) = \arg \max_{(\tau_1, \tau_2)} \frac{1}{|B|} \sum_{t \in B} \frac{1}{H} \mathcal{L}(f_{t+1}, \ldots, f_{t+H} | F_t)$$

$$= \arg \max_{(\tau_1, \tau_2)} \frac{1}{|B|} \sum_{t \in B} \left(-\frac{K}{2} \log 2\pi - \frac{1}{2} \log(\det(F_t)) - \frac{1}{2H} \sum_{i=1}^{H} (f_{t+i} - \bar{f}_{t+i})^T F_t^{-1} (f_{t+i} - \bar{f}_{t+i}) \right)$$
where

$$\bar{f}_{t,H} = \frac{1}{H} \sum_{i=1}^{H} f_{t+i}$$

and

- H is the number of periods in the forecast horizon
- $\bar{f}_{t,H}$ is the $K \times 1$ vector of mean observed premiums over the interval $[t + 1, t + \text{horizon}]$
- B is the set of forecast start times included in the back-test
- $|B|$ denotes the cardinality of set B

The time periods used in the risk model loosely correspond to trading days, and (20, 60, 120, and 240) days correspond to (one, three, six, and 12) months.

The residual variance matrix, Δ_t, is diagonal because residuals for different stocks are assumed independent of each other. Additionally, the expected residual return is assumed to be zero for all stocks. Exposures and/or returns are not always available for all stocks, so the model must account for missing residuals. The residual variance for stock s_1 at time t, σ^2_{t,s_1}, is estimated as follows.

$$\delta_s = \left(\frac{1}{2} \right)^{\frac{1}{\tau_3}}$$

$$z_{3,t-i} = \begin{cases} \delta_s, & \text{if } S_{t-i} \text{ is available} \\ 0, & \text{if } S_{t-i} \text{ is missing} \end{cases}$$

$$\sigma^2_{t,s} = \begin{cases} \left(\sum_{i=0}^{W_t-1} z_{3,t-i} \times [S_{t-i}]^2 \right) / \left(\sum_{i=0}^{W_t-1} z_{3,t-i} \right), & \text{if } \left(\sum_{i=0}^{W_t-1} z_{3,t-i} \right) \geq 0.5 \\ \text{missing,} & \text{else} \end{cases}$$

where

- τ_3 is the half-life for residual standard deviation
- δ_3 is the decay rate for residual standard deviation
- W_t is historical data window size for residual standard deviation
- $z_{3,t-i}$ is the unnormalized exponential weight for time $t-i$, for residual standard deviation

Then Δ_t is the $N \times N$ diagonal matrix with vector $[\sigma^2_{1,s}, \ldots, \sigma^2_{N,s}]$ along the diagonal.

The half-life τ_3 is selected that maximizes the back-test average of the cross-sectional winsorized mean of available average-daily log-likelihoods of observed residual returns over a given forecast horizon, H, assuming a multivariate Gaussian distribution with covariance Δ_t and mean of zero. That is

$$\tau_3 = \arg \max_{\tau_3} \frac{1}{|B_t|} \sum_{t \in B_t} \frac{1}{|R_t|} \sum_{s \in R_t} g(L_{t,s})$$
where

- H is the number of periods in the forecast horizon
- B_r is the set of forecast start times included in the residual back-test
- R_t is the set of calculable log-likelihoods for forecast time t
- $g(L_t)$ performs a 1% lower-side winsorization on the non-missing elements of vector L_t, and
- L_t is an $N x 1$ vector of the average daily log-likelihood, over forecast horizon H, of the residual for each stock, for forecast time t, with element s, for stock s, given by

$$[L_t]_s = \begin{cases}
\frac{1}{2} \log 2\pi \sigma_{t,s} - \frac{1}{2\sigma_{t,s}^2} \left[\frac{1}{|U_{t,s}|} \sum_{i \in U_{t,s}} [S_{t+1}]_i^2 \right], & \text{if } \sigma_{t,s}^2 \text{ is available, and } |U_{t,s}| > 0 \\
\text{missing,} & \text{else}
\end{cases}$$

where

- $U_{t,s}$ is the set of times, relative to forecast time t, for which the residual is available for stock s.

Optimal Parameters

The half-lives were restricted to an integer number of periods. The historical data windows used were $W = 1,200$ and $W_r = 300$. The optimal half-lives, along with their mean log-likelihoods are given in the following table.

Exhibit 5 Optimal Half-Life Parameters

<table>
<thead>
<tr>
<th>Horizon</th>
<th>τ_E</th>
<th>τ_C</th>
<th>τ_A</th>
<th>mean L (premium)</th>
<th>mean L (residual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>62</td>
<td>108</td>
<td>48</td>
<td>-9.213</td>
<td>-2.014</td>
</tr>
<tr>
<td>60</td>
<td>88</td>
<td>154</td>
<td>76</td>
<td>-12.365</td>
<td>-2.048</td>
</tr>
<tr>
<td>120</td>
<td>104</td>
<td>196</td>
<td>84</td>
<td>-14.757</td>
<td>-2.069</td>
</tr>
<tr>
<td>240</td>
<td>150</td>
<td>238</td>
<td>114</td>
<td>-16.881</td>
<td>-2.098</td>
</tr>
</tbody>
</table>

Source: Morningstar.
Appendix G: Frequently Asked Questions

What is the portfolio coverage threshold for calculating forecasts?
We calculate risk exposures for all equity portfolios, but we make forecasts only if we can generate risk forecasts for at least 80% of the portfolio. We can calculate roughly 10,000 equity funds. Note, this excludes money market funds and funds of funds but includes exchange-traded funds and any equity separately managed accounts with holdings information.

I see stock-level exposures are centered around mean 0 with a standard deviation of 1, but this does not appear to be the case for portfolio exposures. Why is that?
Portfolios are specific subsets of stocks. These subsets are often not equally weighted. Also, the subsets are usually tilted toward large-cap and more-liquid stocks. Furthermore, some stocks are never held by portfolios or indexes for which we have portfolio information. All these factors would contribute to the fact we would never expect portfolios to be centered around mean 0 with a standard deviation of 1.

What is the calculation date of the factor exposure data points?
The risk factors are recalculated daily. For portfolios, we use the most recent portfolio holdings information and assume the portfolio weightings do not change.

Why do region and sector exposures not sum to 1?
Region and sector exposures sum to 1 when we include the intercept term of the Bayesian regression. However, we currently do not display the intercept.

Why do some premiums that I observe differ across the risk model options?
Premiums depend on what sets of controls are used in the model and the universe over which the model is applied. For example, in some risk models, value shows up with a large premium, and in others, the size premium may be small. In the Morningstar Global Equity Risk Model, value generates a high mean return. This is not the case in the Morningstar U.K. Equity Risk Model.

Do you model equity and fixed-income securities independently?
Yes, we model equity and fixed-income securities independently, capturing the common risks in equities with the equity risk factors using yield-curve factors to capture the impact of interest-rate movements on bonds.

What types of fixed-income bonds do you cover?
Currently, we cover corporate, sovereign, and municipal bonds denominated in five major currencies (USD, EUR, GBP, CHF, and CAD). In future releases, we plan to improve the coverage by adding bonds denominated in more currencies, mortgage-backed securities, and interest-rate derivatives, as well as improve the explanatory power of our model by introducing new risk factors to capture the effects of credit, liquidity, prepayment, and interest-rate volatility risks.
About Morningstar® Quantitative Research™
Morningstar Quantitative Research is dedicated to developing innovative statistical models and data points, including the Quantitative Equity Ratings and the Morningstar Risk Model.

For More Information
+1 312 244-7541
lee.davidson@morningstar.com

22 West Washington Street
Chicago, IL 60602 USA

© Morningstar 2021. All Rights Reserved. The information, data, analyses and opinions presented herein do not constitute investment advice; are provided solely for informational purposes and therefore are not an offer to buy or sell a security, and are not warranted to be correct, complete or accurate. The opinions expressed are as of the date written and are subject to change without notice. Except as otherwise required by law, Morningstar shall not be responsible for any trading decisions, damages or other losses resulting from, or related to, the information, data, analyses or opinions or their use. The information contained herein is the proprietary property of Morningstar and may not be reproduced, in whole or in part, or used in any manner, without the prior written consent of Morningstar. To order reprints, call +1 312-696-6100. To license the research, call +1 312-696-6869.